能源系統去碳化

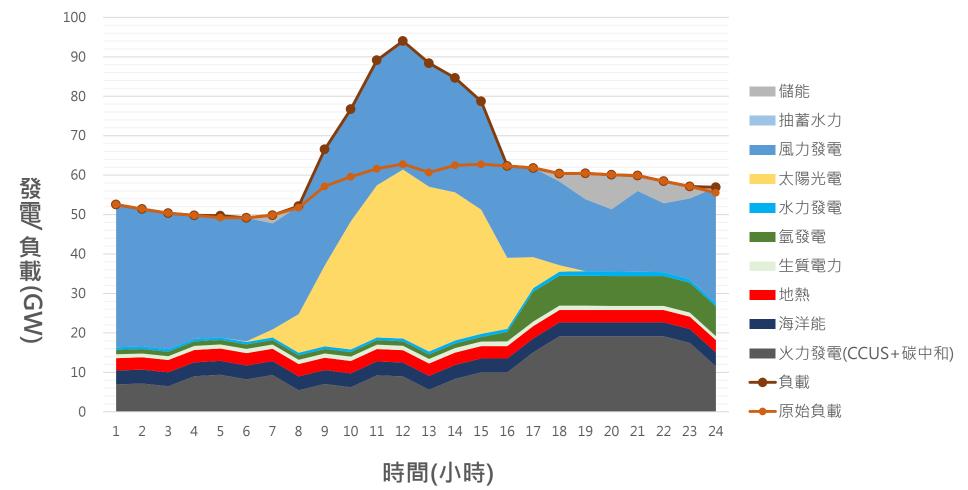
111年12月17日

零碳電力_2050年供給結構

- 我國「2050淨零排放政策路徑藍圖」於2022年3月公布2050淨零排放初步藍圖規劃,**再生能源**發電量將占 **60%~70%**,並搭 9~12%之氫能,加上顧及能源安全下使用搭配碳捕捉之火力發電20~27%,以達成整體電力供應的去碳化。
- 因電力負載時段與變動性再生能源供電無法完全匹配,當再生能源供應過剩時,須藉由儲能系統與電解製氫吸收多餘電能;供應不足時,則須以儲能系統、氫發電與去碳火力補足缺口。

	装置量(GW)	發電占比(%)
再生能源	91 ~ 151	
太陽光電	40 ~ 80	
風力發電	40 ~ 55	
地熱		60% ~ 70%
海洋能	8 ~ 14	
生質電力		
水力發電	2.2	
氫發電 (燃料電池+氫燃氣輪機)	-	9~12%
火力(CCUS/ 碳中和LNG)	-	20~27%
抽蓄水力	2.6	1%
合計		100%

註: 規劃總發電量4,275~5,731億度

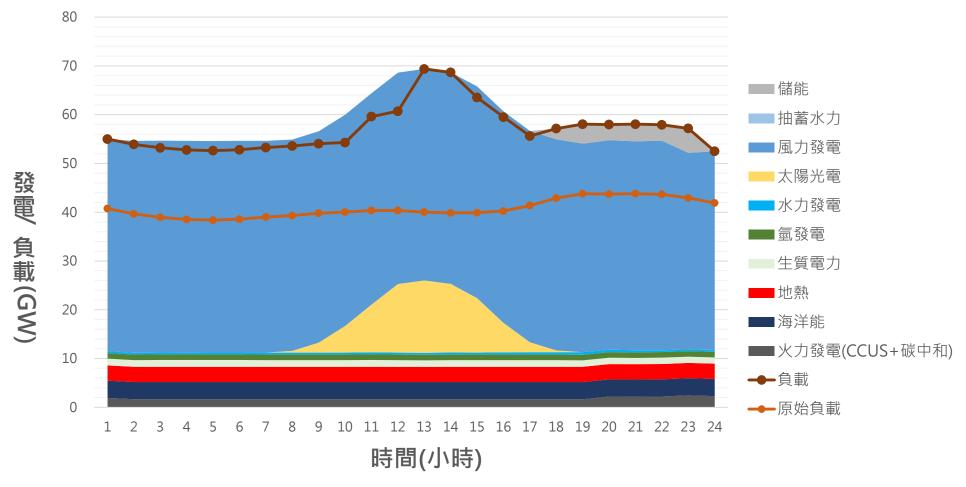

零碳電力_2050年供給情境試算

	模擬情境 裝置量(GW)	發電量(億度)	發電占比(%)
再生能源	118	3,390	66.82
太陽光電	60	751	14.8
風力發電	43	1907	37.59
地熱	5	274	5.40
海洋能	6.1	308	6.07
水力發電	2.2	52	1.03
生質電力	1.6	98	1.93
氫發電 (燃料電池0.3+氫燃氣輪機7.3)	7.6	374	7.37
火力(CCUS/ 碳中和LNG)	40	1,167	23
抽蓄水力	2.97	21	0.41
儲能	10GW/20GWh 5GW/30GWh	121	2.39
總發電量合計		5,073	100%

註: 試算情境之能源配置係參考「2050淨零排放政策路徑藍圖」及「去碳能源工作圈」之專家意見,並非能源配置之定案。

2050年夏季供需模擬

- 再生能源發電不足以供應全日所需,需以去碳火力機組(CCUS/碳中和LNG)補足缺口。
- 再生能源發電於中午時段多於負載,將以儲能系統移轉至其他時段使用。


註1: 本圖為夏季尖峰用電日的推估情況, 其結果將依能源配比與負載變化而異。

註2: 模擬情境呈現每小時發電排程,目的為了解整體能源供需,未考量短時間波動。

4

2050年冬季供需模擬

- 再生能源發電全日均高於負載,而為了維持系統穩定,部分火力機組仍須以最低發電狀態維持運轉。
- 多餘電力以儲能系統移轉,製氫為較具彈性的儲能應用方式。

註1: 本圖為冬季離峰用電日的推估情況,其結果將依能源配比與負載變化而異。

註2: 模擬情境呈現每小時發電排程,目的為了解整體能源供需,未考量短時間波動。

5